这里介绍四篇论文提取比特币地址或者实体特征的方法,作为参考。
–2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) 两颗星
一天的交易频率:一些服务经常发生交易,一些交易较少
recieved transaction占该地址所有交易的比例
coinbase transaction占该地址所有交易的比例:挖矿类型有更高的比例
交易输入的个数
交易输出的个数
花费多少金额作为输入的频率
花费多少金额作为输出的频率
地址同时出现在输入输出的交易比例
结合了服务类型的特征,考虑地址向量的抽取
–2019 ICBC IEEE International Conference on Blockchain and Cryptocurrency 三颗星但不是C类
这篇论文基于上一篇论文增加了一些特征
有图有真相
–2018 CVPR Workshop paper A类workshop
Address features(10)
Entity features(8) defined at the entity level
Temporal features(16)
Centrality features(42) based on entity graph
Motif features
–ICA3PP 2018: Algorithms and Architectures for Parallel Processing C类
address statistical features
address transaction history features
It directly shows that the patterns of an owner when interacting with the Bitcoin system.
For a simple instance, if an address has never paid any fees other than Bitcoin enforcement in its whole transaction history, it is highly unlikely that it belongs to a user that constantly pay extra transaction fees out of self-willingness to speed up the transaction conrmation.
基于API提供的JSON数据进一步解析之后,我们可以获取到的数据如下:
Address features
Temporal features
1-motif features
Graph Topology features
基于图结构的社区发现